1,777 research outputs found

    Polar tropospheric ozone depletion events observed in IGY

    No full text
    International audienceThe Royal Society expedition to Antarctica established a base at Halley Bay, in support of the International Geophysical Year of 1957?1958. Surface ozone was measured during 1958 only, using a prototype Brewer-Mast sonde. The envelope of maximum ozone was an annual cycle from 10 ppbv in January to 22 ppbv in August. These values are 35% less at the start of the year and 15% less at the end than modern values from Neumayer, also a coastal site. This may reflect a general increase in surface ozone since 1958 and differences in summer at the less windy site of Halley, or it may reflect ozone loss on the inlet together with long-term conditioning. There were short periods in September when ozone values decreased rapidly to near-zero, and some in August when ozone values were rapidly halved. Such ozone-loss episodes, catalysed by bromine compounds, became well-known in the Artic in the 1980s, and were observed more recently in the Antarctic. In 1958, very small ozone values were recorded for a week in midwinter during clear weather with light winds. The absence of similar midwinter reductions at Neumayer, or at Halley in the few measurements during 1987, means we must remain suspicious of these small values, but we can find no obvious reason to discount them. The dark reaction of ozone and seawater ice observed in the laboratory may be fast enough to explain them if the salinity and surface area of the ice is sufficiently amplified by frost flowers

    Variability and trends in stratospheric NO2 in Antarctic summer, and implications for stratospheric NOy

    Get PDF
    NO2 measurements during 1990-2007, obtained from a zenith-sky spectrometer in the Antarctic, are analysed to determine the long-term changes in NO2. An atmospheric photochemical box model and a radiative transfer model are used to improve the accuracy of determination of the vertical columns from the slant column measurements, and to deduce the amount of NOy from NO2. We find that the NO2 and NOy columns in midsummer have large inter-annual variability superimposed on a broad maximum in 2000, with little or no overall trend over the full time period. These changes are robust to a variety of alternative settings when determining vertical columns from slant columns or determining NOy from NO2. They may signify similar changes in speed of the Brewer-Dobson circulation but with opposite sign, i.e. a broad minimum around 2000. Multiple regressions show significant correlation with solar and quasi-biennial-oscillation indices, and weak correlation with El Nino, but no significant overall trend, corresponding to an increase in Brewer-Dobson circulation of 1.4+/-3.5%/decade. There remains an unexplained cycle of amplitude and period at least 15% and 17 years, with minimum speed in about 2000

    InfluĂȘncia do uso de areia lavada na taxa de respiração de um latossolo vermelho distrofĂ©rrico argiloso incubado com agregados Ă­ntegros e triturados

    Get PDF
    bitstream/item/66211/1/32008.pdfFERTBIO

    The use of real time digital simulation and hardware in the loop to de-risk novel control algorithms

    Get PDF
    Low power demonstrators are commonly used to validate novel control algorithms. However, the response of the demonstrator to network transients and faults is often unexplored. The importance of this work has, in the past, justified facilities such as the T45 Shore Integration Test Facility (SITF) at the Electric Ship Technology Demonstrator (ESTD). This paper presents the use of real time digital simulation and hardware in the loop to de-risk a innovative control algorithm with respect to network transients and faults. A novel feature of the study is the modelling of events at the power electronics level (time steps of circa 2 ÎŒs) and the system level (time steps of circa 50 ÎŒs)

    Operational Semantics of Process Monitors

    Full text link
    CSPe is a specification language for runtime monitors that can directly express concurrency in a bottom-up manner that composes the system from simpler, interacting components. It includes constructs to explicitly flag failures to the monitor, which unlike deadlocks and livelocks in conventional process algebras, propagate globally and aborts the whole system's execution. Although CSPe has a trace semantics along with an implementation demonstrating acceptable performance, it lacks an operational semantics. An operational semantics is not only more accessible than trace semantics but also indispensable for ensuring the correctness of the implementation. Furthermore, a process algebra like CSPe admits multiple denotational semantics appropriate for different purposes, and an operational semantics is the basis for justifying such semantics' integrity and relevance. In this paper, we develop an SOS-style operational semantics for CSPe, which properly accounts for explicit failures and will serve as a basis for further study of its properties, its optimization, and its use in runtime verification

    Atmospheric nitrogen oxides (NO and NO2) at Dome C, East Antarctica, during the OPALE campaign

    Get PDF
    Mixing ratios of the atmospheric nitrogen oxides NO and NO2 were measured as part of the OPALE (Oxidant Production in Antarctic Lands & Export) campaign at Dome C, East Antarctica (75.1 degrees S, 123.3 degrees E, 3233 m), during December 2011 to January 2012. Profiles of NOx mixing ratios of the lower 100m of the atmosphere confirm that, in contrast to the South Pole, air chemistry at Dome C is strongly influenced by large diurnal cycles in solar irradiance and a sudden collapse of the atmospheric boundary layer in the early evening. Depth profiles of mixing ratios in firn air suggest that the upper snowpack at Dome C holds a significant reservoir of photolytically produced NO2 and is a sink of gas-phase ozone (O-3). First-time observations of bromine oxide (BrO) at Dome C show that mixing ratios of BrO near the ground are low, certainly less than 5 pptv, with higher levels in the free troposphere. Assuming steady state, observed mixing ratios of BrO and RO2 radicals are too low to explain the large NO2 : NO ratios found in ambient air, possibly indicating the existence of an unknown process contributing to the atmospheric chemistry of reactive nitrogen above the Antarctic Plateau. During 2011-2012, NOx mixing ratios and flux were larger than in 2009-2010, consistent with also larger surface O-3 mixing ratios resulting from increased net O-3 production. Large NOx mixing ratios at Dome C arise from a combination of continuous sunlight, shallow mixing height and significant NOx emissions by surface snow (F-NOx). During 23 December 2011-12 January 2012, median F-NOx was twice that during the same period in 20092010 due to significantly larger atmospheric turbulence and a slightly stronger snowpack source. A tripling of F-NOx in December 2011 was largely due to changes in snowpack source strength caused primarily by changes in NO3- concentrations in the snow skin layer, and only to a secondary order by decrease of total column O-3 and associated increase in NO3- photolysis rates. A source of uncertainty in model estimates of F-NOx is the quantum yield of NO3- photolysis in natural snow, which may change over time as the snow ages

    Networks in imperial history

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Over the course of the last two decades Imperial history has undergone a revival. Inspired by the ‘cultural turn’ and the rise of Global history, Imperial historians have moved away from accounts that focus on a metropolitan centre and a colonial periphery. Instead historians have advocated a decentred approach to the study of empire, which emphasises the importance of playing close attention to the multiple networks of capital, goods, information and people that existed within and between empires. While these networked understandings of empire have added much to our understanding of imperialism, the articles in this special issue argue that historians must remain sensitive to the specifics of the imperial experience, the limits of imperialism’s global reach, and the way in which imperialism could lead to new forms of exclusion and inequality

    Energy dissipation in soil samples during drained triaxial shearing

    Get PDF
    The discrete-element method was used to simulate drained triaxial compression of large-scale, polydisperse numerical samples at a range of void ratios while tracing all relevant energy components. The frictional dissipation and boundary work are almost equal regardless of sample density. The volumetric work reaches a steady value at large strain. However, the distortional work increases continually as sample deformation continues post-critical state. There is a preferential orientation for frictional dissipation at around 45° to the major principal stress direction. This matches the orientation at which there is the largest number of sliding contacts. The work equations, which are fundamental in most commonly used constitutive models, are linear when plotted against deviatoric strain. The modified Cam Clay work equation substantially over-predicts the frictional dissipation for dense samples. An alternative, thermodynamically consistent work equation gives a much better description of frictional dissipation and is therefore recommended to ensure accuracy in modelling

    The impact of the mixing properties within the Antarctic stratospheric vortex on ozone loss in spring

    Get PDF
    Calculations of equivalent length from an artificial advected tracer provide new insight into the isentropic transport processes occurring within the Antarctic stratospheric vortex. These calculations show two distinct regions of approximately equal area: a strongly mixed vortex core and a broad ring of weakly mixed air extending out to the vortex boundary. This broad ring of vortex air remains isolated from the core between late winter and midspring. Satellite measurements of stratospheric H2O confirm that the isolation lasts until at least mid-October. A three-dimensional chemical transport model simulation of the Antarctic ozone hole quantifies the ozone loss within this ring and demonstrates its isolation. In contrast to the vortex core, ozone loss in the weakly mixed broad ring is not complete. The reasons are twofold. First, warmer temperatures in the broad ring prevent continuous polar stratospheric cloud (PSC) formation and the associated chemical processing (i.e., the conversion of unreactive chlorine into reactive forms). Second, the isolation prevents ozone-rich air from the broad ring mixing with chemically processed air from the vortex core. If the stratosphere continues to cool, this will lead to increased PSC formation and more complete chemical processing in the broad ring. Despite the expected decline in halocarbons, sensitivity studies suggest that this mechanism will lead to enhanced ozone loss in the weakly mixed region, delaying the future recovery of the ozone hole
    • 

    corecore